Return to Unary operation, Ternary, Outline of mathematics, Essential Math for Data Science, Math Bibliography, Mathematics, Outline of software engineering, Outline of computer science
In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two.
More specifically, a binary operation on a set is a binary function whose two domains and the codomain are the same set. Examples include the familiar arithmetic operations of addition, subtraction, and multiplication. Other examples are readily found in different areas of mathematics, such as vector addition, matrix multiplication, and conjugation in groups.
A binary function that involves several sets is sometimes also called a binary operation. For example, scalar multiplication of vector spaces takes a scalar and a vector to produce a vector, and scalar product takes two vectors to produce a scalar.
Binary operations are the keystone of most structures that are studied in algebra, in particular in semigroups, monoids, groups, rings, fields, and vector spaces.
Cloud Monk is Retired ( for now). Buddha with you. © 2025 and Beginningless Time - Present Moment - Three Times: The Buddhas or Fair Use. Disclaimers
SYI LU SENG E MU CHYWE YE. NAN. WEI LA YE. WEI LA YE. SA WA HE.