Degree of parallelism
Return to Parallel programming
- Snippet from Wikipedia: Degree of parallelism
The degree of parallelism (DOP) is a metric which indicates how many operations can be or are being simultaneously executed by a computer. It is used as an indicator of the complexity of algorithms, and is especially useful for describing the performance of parallel programs and multi-processor systems.
A program running on a parallel computer may utilize different numbers of processors at different times. For each time period, the number of processors used to execute a program is defined as the degree of parallelism. The plot of the DOP as a function of time for a given program is called the parallelism profile.
Concurrency: Concurrency Programming Best Practices, Concurrent Programming Fundamentals, Parallel Programming Fundamentals, Asynchronous I/O, Asynchronous programming (Async programming, Asynchronous flow control, Async / await), Asymmetric Transfer, Akka, Atomics, Busy waiting, Channels, Concurrent, Concurrent system design, Concurrency control (Concurrency control algorithms, Concurrency control in databases, Atomicity (programming), Distributed concurrency control, Data synchronization), Concurrency pattern, Concurrent computing, Concurrency primitives, Concurrency problems, Concurrent programming, Concurrent algorithms, Concurrent programming languages, Concurrent programming libraries, Java Continuations, Coroutines, Critical section, Deadlocks, Decomposition, Dining philosophers problem, Event (synchronization primitive), Exclusive or, Execution model (Parallel execution model), Fibers, Futures, Inter-process communication, Linearizability, Lock (computer science), Message passing, Monitor (synchronization), Computer multitasking (Context switch, Pre-emptive multitasking - Preemption (computing), Cooperative multitasking - Non-preemptive multitasking), Multi-threaded programming, Multi-core programming, Multi-threaded, Mutual exclusion, Mutually exclusive events, Mutex, Non-blocking algorithm (Lock-free), Parallel programming, Parallel computing, Process (computing), Process state, Producer-consumer problem (Bounded-buffer problem), Project Loom, Promises, Race conditions, Read-copy update (RCU), Readers–writer lock, Readers–writers problem, Recursive locks, Reducers, Reentrant mutex, Scheduling (computing), Semaphore (programming), Seqlock (Sequence lock), Serializability, Shared resource, Sleeping barber problem, Spinlock, Synchronization (computer science), System resource, Thread (computing), Tuple space, Volatile (computer programming), Yield (multithreading) , Degree of parallelism, Data-Oriented Programming (DOP), Functional and Concurrent Programming, Concurrency bibliography, Manning Concurrency Async Parallel Programming Series, Concurrency glossary, Awesome Concurrency, Concurrency topics, Functional programming. (navbar_concurrency - see also navbar_async, navbar_python_concurrency, navbar_golang_concurrency, navbar_java_concurrency)
Cloud Monk is Retired ( for now). Buddha with you. © 2025 and Beginningless Time - Present Moment - Three Times: The Buddhas or Fair Use. Disclaimers
SYI LU SENG E MU CHYWE YE. NAN. WEI LA YE. WEI LA YE. SA WA HE.