Link Length
TLDR: Link length is a critical parameter in the D-H Parameters that defines the distance between two successive joints along the axis of rotation in a robotic manipulator. It plays a key role in determining the robotic geometry and robotic functionality of a robotic system, influencing its robotic reach, robotic motion, and task capabilities.
The concept of link length originated with the formalization of the Denavit-Hartenberg Parameters in 1955 by Jacques Denavit and Richard S. Hartenberg. By standardizing the measurement of link dimensions, it became easier to mathematically model robotic systems, particularly for tasks involving kinematics and path planning.
Link length is a fixed property of a robot and does not change during operation. It directly impacts the workspace of the robot, which is the area within which the robotic arm can effectively operate. Longer link lengths increase the robot’s reach but may reduce precision due to increased structural flexibility and inertia.
In robotics, link length is integral to calculations in forward kinematics and inverse kinematics. For instance, in a pick-and-place robot, knowing the link lengths allows engineers to calculate the exact position of the end effector and determine the necessary joint angles for precise object manipulation.
The selection of link length depends on the intended application. In tasks requiring high precision, such as robotic surgery, shorter links are preferred to maintain stability and control. Conversely, tasks like welding in industrial automation may benefit from longer link lengths to cover larger workspaces.
By combining link length with other D-H Parameters, engineers can model and simulate robotic systems effectively. This parameter is critical in both the design and operation of robotics, ensuring that robots perform reliably across a variety of tasks and environments.
https://en.wikipedia.org/wiki/Denavit%E2%80%93Hartenberg_parameters
robotics, robots, automation, actuator, servo motor, motor controller, end effector, gripper, robotic arm, manipulator, degrees of freedom, DOF (Degrees of Freedom), kinematics, forward kinematics, inverse kinematics, PID controller (Proportional-Integral-Derivative Controller), path planning, trajectory planning, motion planning, SLAM (Simultaneous Localization and Mapping), ROS (Robot Operating System), ROS2 (Robot Operating System 2), sensor fusion, ultrasonic sensor, lidar, radar, vision sensor, camera module, stereo vision, object detection, object tracking, robot localization, odometry, IMU (Inertial Measurement Unit), wheel encoder, stepper motor, brushless DC motor, BLDC motor, joint space, cartesian space, workspace, reachability, collision avoidance, autonomous navigation, mobile robot, humanoid robot, industrial robot, service robot, teleoperation, haptic feedback, force sensor, torque sensor, compliant control, inverse dynamics, motion control, path optimization, finite state machine, FSM (Finite State Machine), robotics simulation, Gazebo, MoveIt, robotics middleware, CAN bus (Controller Area Network), ethernet-based control, EtherCAT, PROFINET, PLC (Programmable Logic Controller), microcontroller, firmware, real-time operating system, RTOS (Real-Time Operating System), hard real-time systems, soft real-time systems, robot dynamics, velocity control, position control, acceleration control, trajectory optimization, obstacle detection, map generation, map merging, multi-robot systems, robot swarm, payload capacity, grasping, pick-and-place, robotic vision, AI planning, machine learning in robotics, deep learning in robotics, reinforcement learning in robotics, robotic perception, unsupervised learning, supervised learning, neural networks, convolutional neural networks, recurrent neural networks, CNN (Convolutional Neural Networks), RNN (Recurrent Neural Networks), point cloud, 3D modeling, CAD (Computer-Aided Design), CAM (Computer-Aided Manufacturing), path tracking, control loop, feedback control, feedforward control, open-loop control, closed-loop control, robot gripper, robot joints, linkages, redundancy resolution, inverse kinematics solver, forward kinematics solver, position sensor, velocity sensor, angle sensor, rangefinder, proximity sensor, infrared sensor, thermal sensor, machine vision, visual servoing, image processing, edge detection, feature extraction, point cloud registration, 3D reconstruction, navigation stack, robot operating environment, collision detection, collision response, terrain adaptation, surface mapping, topological mapping, semantic mapping, behavior tree, robotic control algorithms, motion primitives, dynamic obstacle avoidance, static obstacle avoidance, low-level control, high-level control, robotic middleware frameworks, hardware abstraction layer, HAL (Hardware Abstraction Layer), robotic path execution, control commands, trajectory generation, trajectory tracking, industrial automation, robotic teleoperation, robotic exoskeleton, legged robots, aerial robots, underwater robots, space robotics, robot payloads, end-effector design, robotic tooling, tool center point, TCP (Tool Center Point), force control, impedance control, admittance control, robotic kinematic chains, serial kinematics, parallel kinematics, hybrid kinematics, redundant manipulators, robot calibration, robotic testing, fault detection, diagnostics in robotics, preventive maintenance, predictive maintenance, digital twin, simulation environments, robotic operating cycle, power electronics in robotics, battery management system, BMS (Battery Management System), energy efficiency in robots, energy harvesting in robotics, robot docking systems, charging stations for robots, path following algorithms, robotic software development, robot development kit, RDK (Robot Development Kit), middleware communication protocols, MQTT, DDS (Data Distribution Service), TCP/IP (Transmission Control Protocol/Internet Protocol), robot integration, factory automation systems, robot safety standards, ISO 10218 (Robotics Safety Standards), functional safety, robotic compliance testing, robotic benchmarking, robotic performance metrics, accuracy in robotics, repeatability in robotics, precision in robotics, robotic standardization, sensor calibration, actuator calibration, field programmable gate array, FPGA (Field Programmable Gate Array), ASIC (Application-Specific Integrated Circuit), microprocessor, neural processing unit, NPU (Neural Processing Unit), edge computing in robotics, cloud robotics, fog computing, robot deployment, robot commissioning, task allocation in robotics, job scheduling, human-robot interaction, HRI (Human-Robot Interaction), co-bots (Collaborative Robots), robot-human safety, ergonomics in robotics, robot training systems.
Cloud Monk is Retired ( for now). Buddha with you. © 2025 and Beginningless Time - Present Moment - Three Times: The Buddhas or Fair Use. Disclaimers
SYI LU SENG E MU CHYWE YE. NAN. WEI LA YE. WEI LA YE. SA WA HE.