path_planning

Path Planning

Don’t Return to Robotics

TLDR: Path planning refers to the computational process of determining a feasible route or trajectory for a robot to follow while navigating an environment. It is a critical component of robotics and automation, enabling robots to perform tasks such as navigation, obstacle avoidance, and interaction with objects.

The concept of path planning was formalized in the 1960s, coinciding with the development of Shakey the Robot by SRI International. Shakey introduced reasoning and planning capabilities, including rudimentary path planning algorithms, establishing foundational principles for autonomous navigation.

Path planning algorithms can be categorized into two main types: global and local. Global planning uses a pre-defined map to determine the optimal route from the starting point to the destination, while local planning involves real-time adjustments based on sensor data to handle dynamic obstacles. Algorithms like A*, introduced in 1968 by Peter Hart, Nils Nilsson, and Bertram Raphael, remain widely used for global path planning due to their reliability in finding the shortest path.

Applications of path planning span multiple domains, including autonomous robots, mobile robots, and industrial automation. For instance, warehouse robots use path planning to navigate between shelves, while aerial robots rely on these algorithms for safe flight paths. In healthcare, surgical robots use path planning to ensure precise tool movements during procedures.

Developing path planning systems involves integrating sensory input, environmental mapping, and motion control. Tools like ROS (Robot Operating System) and simulation platforms such as Gazebo assist engineers in designing and testing path planning algorithms in virtual environments before real-world implementation.

As robotics technology continues to advance, path planning remains a cornerstone of robotic systems. With improvements in computation and sensing, these algorithms are expected to support increasingly complex and dynamic tasks across a variety of applications, ensuring reliable and safe navigation.

https://en.wikipedia.org/wiki/Path_planning

robotics, robots, automation, actuator, servo motor, motor controller, end effector, gripper, robotic arm, manipulator, degrees of freedom, DOF (Degrees of Freedom), kinematics, forward kinematics, inverse kinematics, PID controller (Proportional-Integral-Derivative Controller), path planning, trajectory planning, motion planning, SLAM (Simultaneous Localization and Mapping), ROS (Robot Operating System), ROS2 (Robot Operating System 2), sensor fusion, ultrasonic sensor, lidar, radar, vision sensor, camera module, stereo vision, object detection, object tracking, robot localization, odometry, IMU (Inertial Measurement Unit), wheel encoder, stepper motor, brushless DC motor, BLDC motor, joint space, cartesian space, workspace, reachability, collision avoidance, autonomous navigation, mobile robot, humanoid robot, industrial robot, service robot, teleoperation, haptic feedback, force sensor, torque sensor, compliant control, inverse dynamics, motion control, path optimization, finite state machine, FSM (Finite State Machine), robotics simulation, Gazebo, MoveIt, robotics middleware, CAN bus (Controller Area Network), ethernet-based control, EtherCAT, PROFINET, PLC (Programmable Logic Controller), microcontroller, firmware, real-time operating system, RTOS (Real-Time Operating System), hard real-time systems, soft real-time systems, robot dynamics, velocity control, position control, acceleration control, trajectory optimization, obstacle detection, map generation, map merging, multi-robot systems, robot swarm, payload capacity, grasping, pick-and-place, robotic vision, AI planning, machine learning in robotics, deep learning in robotics, reinforcement learning in robotics, robotic perception, unsupervised learning, supervised learning, neural networks, convolutional neural networks, recurrent neural networks, CNN (Convolutional Neural Networks), RNN (Recurrent Neural Networks), point cloud, 3D modeling, CAD (Computer-Aided Design), CAM (Computer-Aided Manufacturing), path tracking, control loop, feedback control, feedforward control, open-loop control, closed-loop control, robot gripper, robot joints, linkages, redundancy resolution, inverse kinematics solver, forward kinematics solver, position sensor, velocity sensor, angle sensor, rangefinder, proximity sensor, infrared sensor, thermal sensor, machine vision, visual servoing, image processing, edge detection, feature extraction, point cloud registration, 3D reconstruction, navigation stack, robot operating environment, collision detection, collision response, terrain adaptation, surface mapping, topological mapping, semantic mapping, behavior tree, robotic control algorithms, motion primitives, dynamic obstacle avoidance, static obstacle avoidance, low-level control, high-level control, robotic middleware frameworks, hardware abstraction layer, HAL (Hardware Abstraction Layer), robotic path execution, control commands, trajectory generation, trajectory tracking, industrial automation, robotic teleoperation, robotic exoskeleton, legged robots, aerial robots, underwater robots, space robotics, robot payloads, end-effector design, robotic tooling, tool center point, TCP (Tool Center Point), force control, impedance control, admittance control, robotic kinematic chains, serial kinematics, parallel kinematics, hybrid kinematics, redundant manipulators, robot calibration, robotic testing, fault detection, diagnostics in robotics, preventive maintenance, predictive maintenance, digital twin, simulation environments, robotic operating cycle, power electronics in robotics, battery management system, BMS (Battery Management System), energy efficiency in robots, energy harvesting in robotics, robot docking systems, charging stations for robots, path following algorithms, robotic software development, robot development kit, RDK (Robot Development Kit), middleware communication protocols, MQTT, DDS (Data Distribution Service), TCP/IP (Transmission Control Protocol/Internet Protocol), robot integration, factory automation systems, robot safety standards, ISO 10218 (Robotics Safety Standards), functional safety, robotic compliance testing, robotic benchmarking, robotic performance metrics, accuracy in robotics, repeatability in robotics, precision in robotics, robotic standardization, sensor calibration, actuator calibration, field programmable gate array, FPGA (Field Programmable Gate Array), ASIC (Application-Specific Integrated Circuit), microprocessor, neural processing unit, NPU (Neural Processing Unit), edge computing in robotics, cloud robotics, fog computing, robot deployment, robot commissioning, task allocation in robotics, job scheduling, human-robot interaction, HRI (Human-Robot Interaction), co-bots (Collaborative Robots), robot-human safety, ergonomics in robotics, robot training systems.

(navbar_robotics)


Cloud Monk is Retired ( for now). Buddha with you. © 2025 and Beginningless Time - Present Moment - Three Times: The Buddhas or Fair Use. Disclaimers

SYI LU SENG E MU CHYWE YE. NAN. WEI LA YE. WEI LA YE. SA WA HE.


path_planning.txt · Last modified: 2025/02/01 06:37 by 127.0.0.1

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki