xenix

Xenix

Don’t Return to UNIX

TLDR: Xenix is a discontinued UNIX-based operating system developed by Microsoft Corporation and first released in 1980. It marked Microsoft’s early entry into the UNIX market, aimed at providing a multi-user environment for microcomputers and minicomputers.

Xenix originated as a port of UNIX Version 7, which was initially developed by Bell Labs in the 1970s. Microsoft licensed the source code from AT&T and modified it to support hardware platforms like the Intel 8086. Xenix became one of the first commercial versions of UNIX designed for personal computers and workstations.

During its lifespan, Xenix was adopted by vendors like IBM, SCO (Santa Cruz Operation), and Tandy Corporation, who tailored the system for their specific hardware. IBM’s use of Xenix in its IBM PC and SCO’s later acquisition of rights to Xenix contributed to its popularity in business environments during the 1980s.

Key features of Xenix included multitasking and multi-user capabilities, which were uncommon for operating systems designed for microcomputers at the time. It supported shell scripting, TCP/IP (Transmission Control Protocol/Internet Protocol), and SQL-based database systems, making it a robust solution for commercial applications and early networking.

Despite its initial success, Xenix began to decline in the late 1980s as Microsoft shifted its focus to Windows operating systems. Rights to Xenix were eventually sold to SCO, which used its technology as the foundation for SCO UNIX in 1989, marking the end of Microsoft’s involvement in the UNIX market.

Today, Xenix is remembered as a significant milestone in the history of operating systems, showcasing Microsoft’s early contributions to UNIX-based technologies. Its legacy can be traced in modern systems that evolved from its architecture and principles.

https://en.wikipedia.org/wiki/Xenix

robotics, robots, automation, actuator, servo motor, motor controller, end effector, gripper, robotic arm, manipulator, degrees of freedom, DOF (Degrees of Freedom), kinematics, forward kinematics, inverse kinematics, PID controller (Proportional-Integral-Derivative Controller), path planning, trajectory planning, motion planning, SLAM (Simultaneous Localization and Mapping), ROS (Robot Operating System), ROS2 (Robot Operating System 2), sensor fusion, ultrasonic sensor, lidar, radar, vision sensor, camera module, stereo vision, object detection, object tracking, robot localization, odometry, IMU (Inertial Measurement Unit), wheel encoder, stepper motor, brushless DC motor, BLDC motor, joint space, cartesian space, workspace, reachability, collision avoidance, autonomous navigation, mobile robot, humanoid robot, industrial robot, service robot, teleoperation, haptic feedback, force sensor, torque sensor, compliant control, inverse dynamics, motion control, path optimization, finite state machine, FSM (Finite State Machine), robotics simulation, Gazebo, MoveIt, robotics middleware, CAN bus (Controller Area Network), ethernet-based control, EtherCAT, PROFINET, PLC (Programmable Logic Controller), microcontroller, firmware, real-time operating system, RTOS (Real-Time Operating System), hard real-time systems, soft real-time systems, robot dynamics, velocity control, position control, acceleration control, trajectory optimization, obstacle detection, map generation, map merging, multi-robot systems, robot swarm, payload capacity, grasping, pick-and-place, robotic vision, AI planning, machine learning in robotics, deep learning in robotics, reinforcement learning in robotics, robotic perception, unsupervised learning, supervised learning, neural networks, convolutional neural networks, recurrent neural networks, CNN (Convolutional Neural Networks), RNN (Recurrent Neural Networks), point cloud, 3D modeling, CAD (Computer-Aided Design), CAM (Computer-Aided Manufacturing), path tracking, control loop, feedback control, feedforward control, open-loop control, closed-loop control, robot gripper, robot joints, linkages, redundancy resolution, inverse kinematics solver, forward kinematics solver, position sensor, velocity sensor, angle sensor, rangefinder, proximity sensor, infrared sensor, thermal sensor, machine vision, visual servoing, image processing, edge detection, feature extraction, point cloud registration, 3D reconstruction, navigation stack, robot operating environment, collision detection, collision response, terrain adaptation, surface mapping, topological mapping, semantic mapping, behavior tree, robotic control algorithms, motion primitives, dynamic obstacle avoidance, static obstacle avoidance, low-level control, high-level control, robotic middleware frameworks, hardware abstraction layer, HAL (Hardware Abstraction Layer), robotic path execution, control commands, trajectory generation, trajectory tracking, industrial automation, robotic teleoperation, robotic exoskeleton, legged robots, aerial robots, underwater robots, space robotics, robot payloads, end-effector design, robotic tooling, tool center point, TCP (Tool Center Point), force control, impedance control, admittance control, robotic kinematic chains, serial kinematics, parallel kinematics, hybrid kinematics, redundant manipulators, robot calibration, robotic testing, fault detection, diagnostics in robotics, preventive maintenance, predictive maintenance, digital twin, simulation environments, robotic operating cycle, power electronics in robotics, battery management system, BMS (Battery Management System), energy efficiency in robots, energy harvesting in robotics, robot docking systems, charging stations for robots, path following algorithms, robotic software development, robot development kit, RDK (Robot Development Kit), middleware communication protocols, MQTT, DDS (Data Distribution Service), TCP/IP (Transmission Control Protocol/Internet Protocol), robot integration, factory automation systems, robot safety standards, ISO 10218 (Robotics Safety Standards), functional safety, robotic compliance testing, robotic benchmarking, robotic performance metrics, accuracy in robotics, repeatability in robotics, precision in robotics, robotic standardization, sensor calibration, actuator calibration, field programmable gate array, FPGA (Field Programmable Gate Array), ASIC (Application-Specific Integrated Circuit), microprocessor, neural processing unit, NPU (Neural Processing Unit), edge computing in robotics, cloud robotics, fog computing, robot deployment, robot commissioning, task allocation in robotics, job scheduling, human-robot interaction, HRI (Human-Robot Interaction), co-bots (Collaborative Robots), robot-human safety, ergonomics in robotics, robot training systems.

(navbar_robotics)


Cloud Monk is Retired ( for now). Buddha with you. © 2025 and Beginningless Time - Present Moment - Three Times: The Buddhas or Fair Use. Disclaimers

SYI LU SENG E MU CHYWE YE. NAN. WEI LA YE. WEI LA YE. SA WA HE.


xenix.txt · Last modified: 2025/02/01 06:21 by 127.0.0.1

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki