arangodb

ArangoDB

Return to Misconfigured, GitHub star ranking for organizations, GitHub star ranking for repositories, GitOps or GitHub

TLDR: ArangoDB, introduced in 2012, is a multi-model NoSQL database designed to handle a variety of data types, including key-value, document, and graph models. Its native query language, AQL (Arango Query Language), combines the flexibility of SQL with graph traversal capabilities, enabling advanced use cases such as real-time data analytics, recommendation engines, and fraud detection. ArangoDB is optimized for scalability and performance, supporting applications in industries like finance, retail, and healthcare.

ArangoDB offers hybrid and cloud database capabilities, with built-in clustering, role-based access control, and encryption for secure deployments. The platform eliminates the need for multiple database systems by natively managing a variety of data models, simplifying operations and reducing infrastructure costs. Its support for programming terms such as Python, Java, and C Sharp ensures seamless integration into modern software ecosystems, making it a powerful choice for developers building scalable, data-driven solutions.

https://github.com/arangodb/arangodb

https://www.arangodb.com

https://en.wikipedia.org/wiki/ArangoDB

Snippet from Wikipedia: ArangoDB

ArangoDB is a graph database system developed by ArangoDB Inc. ArangoDB is a multi-model database system since it supports three data models (graphs, JSON documents, key/value) with one database core and a unified query language AQL (ArangoDB Query Language). AQL is mainly a declarative language and allows the combination of different data access patterns in a single query.

ArangoDB is a NoSQL database system but AQL is similar in many ways to SQL, it uses RocksDB as a storage engine.

YouTube Videos

GitHub Tags

External Sites

Main

  • arangodb

Interesting Articles

Support Resources, FAQs, Q&A, Docs, Blogs

Search Engines

Repos and Registries

Courses

Books

Vidcasts-Podcasts

Database: Databases on Kubernetes, Databases on Containers / Databases on Docker, Cloud Databases (DBaaS). Database Features, Concurrent Programming and Databases, Functional Concurrent Programming and Databases, Async Programming and Databases, Database Security, Database Products (MySQL, Oracle Database, Microsoft SQL Server, MongoDB, PostgreSQL, SQLite, Amazon RDS, IBM Db2, MariaDB, Redis, Cassandra, Amazon Aurora, Microsoft Azure SQL Database, Neo4j, Google Cloud SQL, Firebase Realtime Database, Apache HBase, Amazon DynamoDB, Couchbase Server, Elasticsearch, Teradata Database, Memcached, Amazon Redshift, SQLite, CouchDB, Apache Kafka, IBM Informix, SAP HANA, RethinkDB, InfluxDB, MarkLogic, ArangoDB, RavenDB, VoltDB, Apache Derby, Cosmos DB, Hive, Apache Flink, Google Bigtable, Hadoop, HP Vertica, Alibaba Cloud Table Store, InterSystems Caché, Greenplum, Apache Ignite, FoundationDB, Amazon Neptune, FaunaDB, QuestDB, Presto, TiDB, NuoDB, ScyllaDB, Percona Server for MySQL, Apache Phoenix, EventStoreDB, SingleStore, Aerospike, MonetDB, Google Cloud Spanner, SQream, GridDB, MaxDB, RocksDB, TiKV, Oracle NoSQL Database, Google Firestore, Druid, SAP IQ, Yellowbrick Data, InterSystems IRIS, InterBase, Kudu, eXtremeDB, OmniSci, Altibase, Google Cloud Bigtable, Amazon QLDB, Hypertable, ApsaraDB for Redis, Pivotal Greenplum, MapR Database, Informatica, Microsoft Access, Tarantool, Blazegraph, NeoDatis, FileMaker, ArangoDB, RavenDB, AllegroGraph, Alibaba Cloud ApsaraDB for PolarDB, DuckDB, Starcounter, EventStore, ObjectDB, Alibaba Cloud AnalyticDB for PostgreSQL, Akumuli, Google Cloud Datastore, Skytable, NCache, FaunaDB, OpenEdge, Amazon DocumentDB, HyperGraphDB, Citus Data, Objectivity/DB). Database drivers (JDBC, ODBC), ORM (Hibernate, Microsoft Entity Framework), SQL Operators and Functions, Database IDEs (JetBrains DataSpell, SQL Server Management Studio, MySQL Workbench, Oracle SQL Developer, SQLiteStudio), Database keywords, SQL (SQL keywords - (navbar_sql), Relational databases, DB ranking, Database topics, Data science (navbar_datascience), Apache CouchDB, Oracle Database (navbar_oracledb), MySQL (navbar_mysql), SQL Server (T-SQL - Transact-SQL, navbar_sqlserver), PostgreSQL (navbar_postgresql), MongoDB (navbar_mongodb), Redis, IBM Db2 (navbar_db2), Elasticsearch, Cassandra (navbar_cassandra), Splunk (navbar_splunk), Azure SQL Database, Azure Cosmos DB (navbar_azuredb), Hive, Amazon DynamoDB (navbar_amazondb), Snowflake, Neo4j, Google BigQuery, Google BigTable (navbar_googledb), HBase, ScyllaDB, DuckDB, SQLite, Database Bibliography, Manning Data Science Series, Database Awesome list (navbar_database - see also navbar_datascience, navbar_data_engineering, navbar_cloud_databases, navbar_aws_databases, navbar_azure_databases, navbar_gcp_databases, navbar_ibm_cloud_databases, navbar_oracle_cloud_databases, navbar_scylladb)


Database Navbar

Database | Database management system:

Database Concepts:

Database Objects:

Database Components:

Database Functions:

Related Topics:

Category:Database_management_systems | Category

Outline of databases



Cloud Monk is Retired ( for now). Buddha with you. © 2025 and Beginningless Time - Present Moment - Three Times: The Buddhas or Fair Use. Disclaimers

SYI LU SENG E MU CHYWE YE. NAN. WEI LA YE. WEI LA YE. SA WA HE.


arangodb.txt · Last modified: 2025/02/01 07:19 by 127.0.0.1

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki